

III Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, October 2021 (2018 Admission Onwards) MATHEMATICS MAT 3E01 : Graph Theory

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer any 4 questions from Part – A. Each question carries four marks.

 Answer any 4 questions from Part – B without omitting any Unit. Each question carries 16 marks.

PART - A

- 1. Answer any 4 questions. Each question carries 4 marks.
 - 1) Let $(S_1, S_2, ..., S_n)$ be any partition of the set of integers $\{1, 2, ..., r_n\}$, then prove that for some i, Si contains three integers x, y and z satisfying the equation x + y = z.
 - 2) Let G be a k-critical graph with a 2-vertex cut $\{u, v\}$. Then prove that $d(u) + d(v) \ge 3k 5$.
 - 3) When do you say that a graph G is embeddable on a surface S? Further prove that a graph G is embeddable in the plane if and only if it is embeddable on the sphere.
 - 4) If two bridges overlap, then prove that either they are skew or else they are equivalent 3-bridges.
 - 5) Prove that a tree has atmost one perfect matching.
 - 6) Prove that a simple graph G is n-connected if and only if given any pair of distinct vertices u and v of G, there are at least n-internally disjoint paths from u to v.

PART - B

- II. a) If G is simple and contains no k_{m+1} , then prove that $\sum (G) \leq \sum (T_{m,v})$, $T_{m,v}$ denote the complete m partite graph on v vertices in which all partial are as equal in size as possible. Also prove that $\sum (G) = \sum (T_{m,v})$ only $G \cong T_{m,v}$.
 - b) Define a k-critical graph and if G is a k-critical graph, then show that $\delta \ge k$
- III. Define the Ramsey number r(k, l) and find an upper bound and lower bound for the Ramsey number r(k, k).
- IV. a) If G is simple, then prove that $\pi_k(G) = \pi_k(G-e) \pi_k(G\cdot e)$ for any edge e of G.
 - b) For any graph G, prove that $\pi_k(G)$ is a polynomial in k of degree v with integer coefficients, leading term k^v and constant term zero. Further prove that the coefficients of $\pi_k(G)$ alternate in sign.

Unit - II

- V. a) Let G be a connected graph that is not an odd cycle. Then prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree at least two.
 - b) If G is bipartite and if $p \ge \Delta$, then prove that there exist p-disjoint matchings $M_1, M_2, ..., M_p$ of G such that $E = M_1 \cup M_2 \cup ..., \cup M_p$. Also show that any two matchings M_i and M_j differ in size by at most one.
- VI. a) Describe a good algorithm for finding a proper Δ-edge colouring of a bipartite graph G.
 - b) If G is simple, then prove that either $X'(G) = \Delta$ or $X'(G) = \Delta + 1$.
- VII. a) Show that K_5 can be embedded on the torus and K_{33} on the Mobius band.
 - b) State and prove Euler's formula for planar graphs and show that $K_{3,3}$ is not planar. Also check the planarity of K_{33} e.

8

Unit - III

/III. a) Let G be a bipartite graph with bipartition (X, Y). Then prove that G contain a matching that saturates every vertex in X if and only if 10 $|N(S)| \ge |S|$ for all $S \le X$. 6 b) State and prove the marriage theorem. IX. a) Give the Kuhn-Munkres algorithm to find an optimal matching in a weighted 10 complete bipartite graph. Also draw its flow chart. b) Let I be a feasible vertex labelling of G. If G, contains a perfect matching 6 M*, then M* is an optimal matching of G. X. a) Let u and v be two non-adjacent vertices of a graph G. Then prove that the maximum number of internally disjoint u-v paths in G equals the minimum 8 number of vertices in a u-v separating set.

b) Let G be a simple graph, then prove that $K(G) \le K_e(G) \le \delta(G)$.